BREAKING: Simulations indicate that 68% of the universe might not truly exist.

According to the Lambda Cold Dark Matter (Lambda-CDM) model, which is the current accepted standard for how the universe began and evolved, the ordinary matter we encounter every day only makes up around five percent of the universe’s density, with dark matter comprising 27 percent, and the remaining 68 percent made up of dark energy, a so-far theoretical force driving the expansion of the universe.

But a new study has questioned whether dark energy exists at all, citing computer simulations that found that by accounting for the changing structure of the cosmos, the gap in the theory, which dark energy was proposed to fill, vanishes.

How Black Holes Could Finally Solve the Mystery of Dark Energy

The problem is, the equations at work are incredibly complicated, so physicists tend to simplify parts of them so they’re a bit more practical to work with. When models are then built up from these simplified versions, small holes can snowball into huge discrepancies.

“Einstein’s equations of general relativity that describe the expansion of the universe are so complex mathematically, that for a hundred years no solutions accounting for the effect of cosmic structures have been found, we know from very precise supernova observations that the universe is accelerating, but at the same time we rely on coarse approximations to Einstein’s equations which may introduce serious side effects, such as the need for dark energy, in the models designed to fit the observational data.” says Dr László Dobos, co-author of the new paper.

Simulation suggests 68 percent of the universe may not actually exist

Dark energy has never been directly observed, and can only be studied through its effects on other objects. Its properties and existence are still purely theoretical, making it a placeholder plug for holes in current models.

The mysterious force was first put forward as a driver of the universe’s accelerated expansion in the 1990s, based on the observation of Type Ia supernovae.Sometimes called “standard candles,” these bright spots are known to shine at a consistent peak brightness, and by measuring the brightness of that light by the time it reaches Earth, astronomers are able to figure out just how far away the object is.

This research was instrumental in spreading acceptance of the idea that dark energy is accelerating the expansion of the universe, and it earned the scientists involved the Nobel Prize in Physics in 2011. But other studies have questioned the validity of that conclusion, and some researchers are trying to develop a more accurate picture of the cosmos with software that can better handle all the wrinkles of the general theory of relativity.

A comparison of three models of universal expansion: top left, in red, is the Lambda-CDM model, including dark energy; middle, in blue, is the new Avera model, which accounts for the structure and doesn't require dark energy; and right, in green, is the original Einstein-de Sitter model, which also doesn't include dark energy

The team simulated how gravity would affect matter in this structure and found that, rather than the universe expanding in a smooth, uniform manner, different parts of it would expand at different rates. Importantly, though, the overall average rate of expansion is still consistent with observations, and points to accelerated expansion. The end result is what the team calls the Avera model.

“The theory of general relativity is fundamental in understanding the way the universe evolves,” says Dobos. “We do not question its validity; we question the validity of the approximate solutions. Our findings rely on a mathematical conjecture which permits the differential expansion of space, consistent with general relativity, and they show how the formation of complex structures of matter affects the expansion. These issues were previously swept under the rug but taking them into account can explain the acceleration without the need for dark energy.”

If the research stands up to scrutiny, it could change the direction of the study of physics away from chasing the ghost of dark energy.

The research was published in the Monthly Notices of the Royal Astronomical Society, and an animation below compares the different models.

Source: Royal Astronomical Society

 

Related Posts

This house was built on impossible terrain at a height of 4003 meters (13133 feet) in Switzerland

This house was built on impossible terrain at a height of 4003 meters (13133 feet) in Switzerland in 1915. I wonder what technique was used to get…

The day of birth is particularly emotional due to the 9-month wait and the parents’ worry-filled tears

Suffering from a rare syndrome, a newborn baby has just been born that has been classified as an “alien” and has been abandoned by his own mother…

Incredible Story: South African woman shatters the Guinness World Record by giving birth to 10 babies at once

A woman from South Africa, Gosiame Thamara Sithole, 37, has recently given birth to 10 babies – seven boys and three girls – at a һoѕріtаɩ in…

Appears a baby has just been born in India with a fish tail that surprised everyone

In a surprising and ᴜпᴜѕᴜаɩ іпсіdeпt, a baby has been born in India with a fish tail. The newborn’s ᴜпᴜѕᴜаɩ feature has саᴜɡһt the attention of medісаɩ…

Heartbreaking extraordinary tales and remarkable miracle, Baby with 2 Heads, 3 Arms, and 2 Hearts Longing to Live Like Other Children

In a world filled with extraordinary tales and remarkable miracles, one story stands out among the rest, leaving people astounded and in awe. It is the extraordinary…

Ridiculous the story of a woman pregnant belly with a snake wrapped around her neck

In this article, we will explore the story of a woman who has gained attention due to her extremely monstrous pregnant belly, which is always accompanied by…

Leave a Reply

Your email address will not be published. Required fields are marked *